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Abstract-Thermal instability of forced convection flow over an isothermal horizontal flat plate in the 
form of longitudinal vortices is examined by introducing three-dimensional spatial dependence of the 
perturbation quantities. The system of stability equations has been simplified significantly by considering 
the limiting case of very large Prandtl numbers and by seeking similarity solutions for the amplitude 
functions of the perturbation quantities. The effect of x-dependent temperature perturbation is shown to 
stabilize the flow as compared with x-independent temperature perturbation, which explains very well the 

extant theoretical results and experimental observations. 

1. INTRODUCTION 

THE OCCURRENCE of longitudinal vortex rolls in a 
laminar flow over an isothermal horizontal flat plate 
has drawn the attention of many researchers since 
Wu and Cheng [l] first reported their result of linear 
stability analysis. In most studies performed thereafter 
[2], it has been customary to consider that the 
stationary and neutrally stable perturbation quan- 
tities are independent of the x (main flow direction) 
coordinate. This idea originated from the excellent 
discussion by Haaland and Sparrow [3] who investi- 
gated the onset of vortex instability in natural convec- 
tion flow adjacent to a heated inclined flat plate. Such 
a choice of perturbation quantities may have to be 
re-examined when purely forced (or mixed) convection 
basic flow is employed, as suggested recently by Chen 
and Chen [4], who performed a meticulous numerical 
analysis for the thermal instability of the family of 
Falkner-Skan flows. Therefore, in this study, we 
are mainly interested in how the x dependence of 
perturbation quantities will affect the onset criterion 
of thermal instability of forced convection flow. 

In order to examine the validity of this viewpoint 
preferentially, the system of stability equations is 
simplified by restricting it to the case of very large 
Prandtl numbers. This simplification is made on the 
basis of the observation that as the Prandtl number 
becomes large the critical Grashof number and the 
critical wave number depend on Prandtl number only 
weakly. For example, Hwang and Cheng [S] who 
analysed the thermal instability of laminar natural 
convection flow on inclined isothermal plates found 
that the critical Rayleigh number is a weak function 
of Prandtl number. Choi [6] and Davis and Choi [7] 
also presented, in their investigations on the onset of 
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cellular convection in a flowing liquid layer, that there 
is a good agreement between the theoretical result 
obtained with infinite Prandtl number and the experi- 
mental result using water (Pr = 7). 

The partial differential equations for the amplitude 
functions of perturbation quantities are further 
reduced to ordinary differential equations by intro- 
ducing a similarity variable which is based on the 
thermal boundary layer thickness. Then, the non- 

parallel and the parallel basic flow models are repre- 
sented in the form of approximating polynomials 
which are usually adopted in the integral method of 
a forced convection boundary layer problem so that 
the perturbation quantities may be sought in the 

convenient form of a fast convergent power series. 
The difficulty commonly encountered in representing 
the boundary layer conditions in the main stream 
region outside the boundary layer is overcome by 
replacing it with the condition at the edge of the 
thermal boundary layer or by adopting the assump- 
tion of the so-called bottling effect of the temperature 
perturbation [3, 71. The advantage of this approach 
is that the critical values marking the onset of thermal 
instability can be obtained simply as the solution of 
a 6 x 6 (or 5 x 5) determinant which consists of 
the conditions at the interface between the thermal 
boundary layer and the outer region only. 

2. ANALYSIS 

We consider the vortex instability of a steady 
laminar boundary layer flow over an isothermal 
horizontal flat plate, which is maintained at a constant 
temperature T,. The free stream velocity is U, and 
the free stream temperature T,. The fluid properties 
are assumed to be constant except that the density 
variations are considered only to the extent that they 
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NOMENCLATURE 

Gr, local Grashof number, g/IAt x3/u’ (X, .v, 2) rectangular Cartesian coordinates 

89 g gravitational acceleration (see Fig. 1). 

Lo a constant characteristic length 

P,, P> P’ basic pressure, pressure, pressure Greek symbols 
perturbation 

; 

wave number 
Pr Prandti number JC/V thermal expansion coefficient 
Ra Rayieigh number, gf(At &:/KY &.6, velocity boundary layer thickness, 

Ku0 Rayleigh number, thermal boundary layer thickness 
&A@,, Re- li2 Pr- L’3)3/~i~ i similarity variable, z/S,(x) 

Re Reynolds number, U,L,Jv K thermal diffusivity 

Re, local Reynolds number, U,,X/V 1’ kinematic viscosity 

Tb basic temperature P density. 

7,,T, wall temperature, free stream 
temperature Superscripts 

t, t’ temperature, temperature perturbation quantities 
perturbation dimensionless variables based on 

AC temperature difference, ‘& - r, Lo 
(VW w,) basic velocity components dimensionless variables based on 

u, free stream velocity S,(l) 

I, L’, w) 

velocity vector * amplitude functions of 
velocity components perturbation quantities, 

(Id’, o), w’) components of velocity 
perturbation 

contribute to the buoyancy forces. Thus, the starting quantities and linearizing the remaining parts, we 
point for the present problem is the Boussinesq form obtain the stability equations. In non-dimensionaliz- 
of the conservation laws ing these equations, we follow Chen and Chen’s [4] 

V.i.t=O (1) 
argument by introducing the constant length scales, 
L, and L, Rsz-‘!~ Pr-If3, respectively, for streamwise 

u,vu= -+g~(i-TT,)+rv2U (2) 
and normal variations, where the thermal boundary 
Iayer thickness 6, is known to vary approximateIy as 

u*vt = ter (3) 
the latter. Using these length scales, the dimensionless 
variables are 

where the coordinate system is taken as schematically 
shown in Fig. 1. 

As discussed in refs. [l, S], the basic flow is a two- 

dimensional forced or mixed convection boundary 
layer flow which depends on x and z, and is denoted 
by U,, V, = 0, W,, P, and Tb. According to linear 
stability theory, the infinitesimal perturbation quanti- 
ties are superposed on the basic quantities. Based 

on the arguments given in the first part of the 
~ntroductiol~, we assume that the derivatives of the 
perturbation quantities with respect to x may not be 
zero. Hence, the perturbed flow can be represented 
as 

u = U,(x, 2) + u’(x, y, z) 

u = u’(x,y,z) 

1 
(X,j,F) = -(~,yR~“~Pr’~~,zRp’~~~r’~~) 

LO 

(Cf,, W,) = j$(U,Pr”“. Wb Re’!’ Pr213) 
I> 

1 
(ii, 6, W) = ~(u’ Pr l/3, uf Keli2 pr213, wfRel/2 pr2/3) 

Tbz- T 
ir, = -g 

w = Wb(X,Z) + w’(x,y,z) 

t = &(x. z) + tyx, y, 2) 

p = P,b, 4 + p’fx, y, 4. 

Substituting the above expressions into equations 
(l)-(3), subtracting the parts satisfied by the basic FIG. 1. Schematic diagram of the basic flow tiefd. 
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These variables are of the same form as those used 

by Chen and Chen [S] except that in the pressure 

perturbation term a factor of Pr1j3 is included instead 
of Pr413. Thus, the dimensionless equations governing 
the disturbances can be written as 

au a6 aw -+:+z=o ax ay (4) 

1 i ap 1 a2u a2ii d2u =-- -__ 
Re pr213 dx 

+p-+-+- 
Re Pr213 ax2 aj2 a22 (5) 

ap 1 
=- + 

dj 

a2v I a26 I fi- 

Re Pr213 ax2 aj2 az2 (6) 

?- 1 a26 a2w a2W =-- ";f + Ra,t+ ~- 
Re Pr2’3 dZ2 

+ay2+s (7) 

1 a2t a2t d2t =~-+-+--_. 
RePr213 dz2 dy2 af2 (8) 

Since our primary interest is in the effect of the x 
dependence of perturbation quantities on the onset 
of thermal instabilities, for the present study we 
restrict ourselves to the case of very large Prandtl 
numbers, as discussed in the second paragraph of the 
Introduction. Then all terms representing the inertia 
effect in the equations of motion are negligible [4, 51. 
In addition, the terms involving +/ldx, d2ti/aX2, 
a2U/lax2, a2w/aX2 and d2L/dX2 can also be omitted 
compared with other terms so that the resulting 
system of equations becomes 

aii 56 a* 
-+-•_z=o ax aj (9) 

a2ii a2u 
-+s=o 
ag* 

ap a26 a23 
--+-+a,-2=0 

aj aj2 (11) 

ati 
-i-+Raot+fi+$O 

z aj2 (12) 

a2t a2t 
&,~+ti'!j$-+ @!b;;+"~=~+-& (13) 

Manipulating a’( 1 l)/ay& - a2( 12)/dy2 and utilizing 
the continuity equation (9) in conjunction with equa- 
tion (lo), we obtain 

($+$~G+R..$=O. (14) 

Next, we note from equation (10) and by considering 
boundary conditions at 5 = 0 and cc that ii E 0. 

Speaking more specifically, we note by comparing the 

right-hand sides of equations (5)-(7) that U is of lower 
order of magnitude than 0 and W as Pr + co. This is 
consistent with the observation that in the limiting 
case of Pr + co, the velocity perturbation in the 
streamwise direction disappears, as discussed in Chen 
and Chen [4] and references thereof. Hence equation 
(13) can now be reduced to 

For the convenience of later analysis, equations (14) 
and (15) are rewritten in dimensional form as 

vv;v;w’ + g/E = 0 
aY2 

(16) 

where 

v2(.) _ a2c) I a2u, 2 ay2 az2 

In predicting the onset of longitudinal vortex rolls, 
which are periodic in the y direction, the following 
form of normal modes for the perturbation quantities 

are employed: 

w’(x, y, z) = w*(x, 2) eioly 

t’(x,y, z) = ~*(x,z)eiaY. (18) 

Substituting these expressions into equations (16) and 
(17), we obtain 

w* -g/3a2t* = 0 (19) 

u,g+ wbg+w*+ 

( > 

$2 t*, 
(20) 

Similarity solutions for the amplitude functions 

w*(x, z) and t*(x,z) are sought by introducing a 
similarity variable based on 6,(x) which is the thermal 
boundary layer thickness of the basic flow field 

i = z/&(x). 

Accordingly, a new set of dimensionless variables are 
defined by using K/~,(X) and At as reference velocity 
and temperature difference 

G(i) = 2 w*(x, z) 
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Table 1. Approximating polynomials used lo represent the 
basic quantities in the integral method of boundary layer 
analysis and corresponding boundary layer thicknesses, 

where &, = z/S, and [ = z/a, 

4.64 pr-IJ3 1.74 

Table 2. The values of 
parameter K for various 

cases 

Case Value of K 

Al, Bt 8.0736 
A2, B2 16.1472 
A3, B3 - 8.0736 
A4,B4 0 

Then, equations (19) and (20) are nondimensionalized 
as follows: 

(Dz _ (k2)+ - Ra@t’= 0 (21) 

where D(.) = d(.)/d<. The boundary conditions are 
G = Da = T = 0 at c = 0 and co). Solving the above set 
of ordinary differential equations requires information 

on the basic flow field. Instead of using the exact 
solutions for the mixed convection flow problem 
elucidated in ref. [8], we adopt approximating polyno- 
mials which are used in the integral analysis of 
momentum and energy equations for the forced 
convection boundary layer flow problem. The fact 
that we are employing forced convection boundary 
layer flow can be justified if we recall that large 
Prandtl number fluids as considered in this study are 
less susceptible to buoyancy effects [9]. In Table 1, 
third-order polynomials for U, and 7’,‘, and a fourth- 
order polynomial for W, are given. A careful examina- 
tion of these approximating polynomials shows that 
as Pr + co the coefficient of the second term of the 
left-hand side of equation (22) is reduced to a very 
simple form 

= Kc2(K = const.) (23) 

where the values of K for various cases are shown in 
Tabie 2. Substituting equation (23) into equation (22) 
and eliminating T from equations (21) and (22), we 
obtain 

(D’ + Kc2D - a2)(D2 - sr’)*w = Ra z2wD8, (24) 

where it is agreed that from here on tildes (-) over 
dimensionless quantities are omitted for convenience. 
Now, if we denote wi([) = w(c) for < < 1 and 
w&f = w(c) for [ > 1, then, according to the definition 

of the thermal boundary layer, equation (24) can be 
written in a divided fashion as follows: 

for < < 1 

(D2 + K12D - a*)(D* - a2)*w, = Ra z*w,DO, (25) 

fort> 1 

(D* + Kc2D - a*)(D* - LY*)~w,, = 0 (26a) 

with boundary conditions 

wi = Dwi = (D2 - z2)2wi = 0 at{=0 (27) 

DRwi = D”w,(n = 0,1,2,3,4,5) at<=1 (28a) 

w0 = Dw, = (D* - a*)$, = 0 as i -+ co. (29a) 

If we assume that the bottling effect whereby 
the temperature disturbance is contained within the 
thermal boundary layer of the basic flow (33 holds, 
then for [ > 1 we can take t = 0. Actually, this idea 
was proven to be valid by Choi [6] and Davis and 
Choi [7] who reported that in a liquid-film flow of a 
large Prandtl number fluid the temperature disturb- 
ances are confined within the thermal boundary layer 
at the onset of thermal instability. The stability 
equation can then be written as follows: 

for < I 1 

(D* + K{*D - a2)(D2 - a2)*wi = Racr*w,Df?, (25) 

for [ > 1 

(D2 - a2)*wo = 0 (26b) 

with boundary conditions 

wi = Dw, = (D’ - n2)‘wi = 0 at < = 0 (27) 

D”w~ = D”w,(n = 0, 1,2,3,4) at<=1 (28b) 

w0 = Dw, = 0 as<+a3. (29b) 

For each of the problem sets (25)-(29a) and (25)- 
(29b), we can additionally study the effect of parallel 
basic flow (W, = 0 in equation (17)), the effect of 
~rturbation quantities which are inde~ndent of 
x(&‘/h = 0 in equation (17)) and the combined effect 
of both. Thus, stability analyses are carried out for 
eight different subproblems altogether. The values of 
K appearing in equations (23)-(26) differ according 
to the subproblems considered and are listed in Table 
2, where symbol ‘A’ corresponds to problem set (25)- 
(29a) and ‘B’ to (2.5)-(29b), while symbol ‘1’ refers to 
the subproblem with (W, # 0, at'jax # 01, ‘2' with 
(w, = 0, ate/ax f 0), ‘3’ with (w, z 0, atflax = 0) and 
‘4’ with (W, = 0, &‘/ax = 0). 

3. METHOD OF SOLUTION 

Since the coefficients of the ordinary differential 
equation (25) are polynomials in i( I I), we can use 
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the well-known power series solution method [lo] 
and construct a general solution for wi in the form 

5 

wi = 1 cjf;(i) 

j=O 

where C,(j = 0, 1,2,3,4,5) are arbitrary constants and 
f,(l) are rapidly convergent power series 

f;-(c) = f bj;‘?(Ra, a)i” {j = 0, 1,2,3,4,5). 
n=CJ 

The series coefficients for n s 5 are specified as 

b”$ = b”$ = b”‘, = 0 

b’j’ = ij n w 

and those for n 2 6 are determined in terms of the 
preceding coefficients obeying the recurrence formulas 
generated from equation (25) 

by = 
L 

3rx2(n - 2)(n - 3)fn - 4)(n - S)b$z 

- R(n - 3)(n - 4)(n - 5)(n - 6)(n - 7)bj;‘f, 

- 3a4(n - 4)(n - 5)b”’ n 4 

+ 2Kaz(n - 5)(n - 6)(n - 7)b’? ” s 

+ (a2 + ;oriRo)b”‘, - a4K(n - 7)bl;‘;, 

+%r2Rab(? 
2 n 0 1 

i 
{r+l - l)(n - 2)(n - 3)fn - 4)(n - 5)). 

The constants Cj(j = 0,1,2,3,4,5) are chosen to 
satisfy the boundary and interface conditions. From 
the boundary conditions at < = 0, we obtain 

co = c, = 0, 

Thus, wi can now be written as 

(30) 

As for the solution of w,,, we first consider the case 
when the bottling effect of the thermal disturbances 
is not taken into account by writing equation (26a) 
for < > 1 in the following form: 

(D’ + K[*D - a’)Y= 0 (32) 

(D2 - ayw() = I: (33) 

We then begin by finding a solution which satisfies 
the third condition of equation (29a), that is 

Y-+0 as[-+co. 

Thus, the solution of equation (32) can be obtained 
through the WKB method [ll] 

Y-exp[-~,3-~~(~,+~,+,)d~] 

114 

fg;4+K;+2 . 

> 
From this expression we can calculate Y( 1) and Y’(l), 
which are exactly coincident with the values obtained 
through numerical integration from the asymptotic 
solution of equation (32) as C -) co. Now it can be 
said that one of the boundary conditions as 5 + 00 is 
replaced with two initial conditions at c = 1. 

Therefore, introducing the transformation of vari- 
ables s = < - 1, solving equation (32) near s = 0 (i.e. 
for s < 1) by a power series solution method and 
sequently solving equation (33) by an operator tech- 
nique, we obtain near s = [ - 1 = 0 

w0 = C,[e”“g(s) - e-““h(s)]/4ff2 

f C eaus + Csse-4S 7 (34a) 

where functions g(s) and h(s) are power series as 
shown below 

g, = -[(K + 2e)(n - l)s,_ 1 + K(2n - 4 + a)g,-~ 

+ K(n - 3 + Za)g,_a + Kas,_,J/n(n - 1) 

g-1 =g_, =o 

go = Y(1) 

g, = Y(l) - aY(l) 

44 = “go(n + & + 2)S”+2 + i E -+,+I 
n-0 

/I,= -[(K-2a)(n- 1)/z,_, +K(2n-4-c&_, 

+ K(n - 3 - 2a)h,_, - Kah,_,]/n(n - 1) 

h-, =h_,=O 

h, = Y(l) 

h, = y’(1) + aY(1). 

Finally, application of boundary conditions (28a) with 
(31) and (34a) results in the following secular equation 
of a 6 x 6 determinant: 

+ x2/6& -.G -.fs 0 I 1 0 -(f2 

0 1 
0 I ia 

1 -(f; + a’l6fk) -f> -fi 

I -2cr -(f;’ + a2/6fJ -f;’ -f;’ 

0 1 -a3 301’ -(f;” + a2/6fi’) -yi’ -.f;” 

y i”____-I” 
-(fy f az/6f2) -f: -fy 

--_-__--_----- ------ 

Y’ -a5 5aa -(f; + a2/6f;) -,/; -.f; I 

= 0 
(35) 

115=X 
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FIG. 2. Neutral stability curves for various cases. 

Table 3. Critical values obtained by 
the present analysis under various 

Case gk, Ra, Gr,jRe:.S 

Al 1.98 778.9 7.797 
A2 2.23 1194.5 11.957 
Bl 2.08 872.7 8.736 
B2 2.26 1231.1 12.324 
B3t 1.76 438 4.38 
B4t 1.88 584 5.85 

tThese cases have been treated 
separately in ref. [12]. 

where primes denote differentiation with respect to [. 
We next consider the case when the bottling effect 

is taken into account. In this case, an exact solution 
of equation (26b) satisfying boundary conditions 
(29b) can be obtained in a very simple form near 
s=[-l=O 

w0 = C6embs + C,se-Us (34b) 

where s = [ - 1 as before. By applying boundary 
conditions (28b) with (31) and (34b), we obtain the 
secular equation of a 5 x 5 determinant which consists 
of the elements inside the dotted line in equation (35). 

Equation (35) is an eigenvalue problem, through 
which the value of Ra can be found as an eigenvalue 
for a given value of a. Once the neutral stability curve, 
that is, the curve of a vs Ra is obtained, the minimum 
value of Ra and the corresponding wave number tl 
can be determined which marks the onset of thermal 

instability. 

4. RESULTS AND DISCUSSION 

The neutral stability curves for four cases where 
the x-derivatives of the perturbation quantities are 
assumed are shown in Fig. 2. The critical Rayleigh 
numbers Rn, and the corresponding critical wave 
numbers c(, obtained from the neutral stability curves 
in Fig. 2 are tabulated in Table 3 together with the 
critical buoyancy parameters Gr,/Re:.’ which are 
proportional to the critical Rayleigh number, Ra,. 
Case Al is most important, where non-parallel basic 

flow and x-dependent perturbation quantities are 
considered. The results for other cases are listed to 
study qualitatively the effect of parallel basic flow and 
the bottling effect of temperature perturbation. In 
Table 4, the result for case Al is also compared 
with previous theoretical and experimental works 
performed under different situations. The effect of 
Reynolds number on the critical Grashof number 
may be studied separately from Fig. 3. 

To include Wu and Cheng’s [l] data may be in- 

significant because it has already been pointed out in 
a few previous works such as Chen and Mucoglu 

[14] and Moutsoglou et al. [Z] that a couple of 
numerical errors were involved in their work. The 
vortex instability of forced convection flow over a 
horizontal flat plate was also treated by Moutsoglou 
et nl. [2] as a part of their thorough investigation on 
vortex instability of mixed convection flow. Like 
Wu and Cheng, they simply followed Haaland and 
Sparrow [3] by adopting the form of perturbation 
quantities which are independent of x. As shown in 
Table 4 and Fig. 3, their theoretical values of the 

parameter Gr,/Re~~s are about two orders of magni- 
tude lower than Gilpin et d’s [13] experimental 

values. This may be acceptable when we consider that 
instability must grow for a finite disturbance before 
its amplitude is large enough to be observed [2, 4, 131. 
However, questions can be raised about the values of 
Moutsoglou et al’s [Z] critical wave numbers which 
are either zero for forced convection flow or extremely 
small for mixed convection flow in the light of Gilpin 
et at.‘s [13] experimental values. In fact, it is quite 
curious why Moutsoglou et al. did not make any 
comments on their unr~listically small values of their 
critical wave numbers. An answer to these doubts can 
be found by considering x-dependent perturbation 
quantities, because the concept of x-dependent per- 
turbation quantities which used to be valid for natural 
convection basic flow may fail to be so for forced 
convection basic flow, where stronger transport of 
disturbance energy along the streamwise direction 
may stabilize the flow. In fact, Chen and Chen [4] 
already argued that large Reynolds number may 
suppress the occurrence of thermal instability in the 
forced convection problem, although they did not 

specifically mention the role of x-dependent pertur- 
bation quantjties. 

On the other hand, it is remarkable that the present 

result for Case Al agrees exactly with Chen and 
Chen’s [4] result for their M = 0 (flat plate) when the 
following conversion is made between the two: 

K+ = K,i[2xC]“2 

J2 J2 *---16, = -2 
4.64 4.64 

Ra+ = Ru~[~x+]~‘~ 

g~A~(~~ Re- ‘j2 Pr-ri3)3 
= 

av 
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Table 4. Comparison of critical values with those obtained by previous works on vortex instability? 

Perturbation 
Basic flow quantities Pr UC Gr,/Re,‘.’ 

Wu and Cheng [l 

Moutsoglou et al. 

10 3.70(a* = 1.72) 75.48 
1 forced a(.) 102 2.95 (a’ 2.95) = 13.46 

convection 
-_=O 
ax 103 1.81 (a’ = 3.90) 2.406 

104 1.55 (a* = 7.2) 1.806 

forced a(.) 0.7 0 
convection -_=O ax 7 0 

PI 0.7 0.005 -0.314 0.447 
mixed (a* = 0.001-0.06) 
convection 

a(.) _ o 
ax 7 0.0019-0.087 0.434 

(a* = O.ooOS-0.036) 

Chen and Chen [4] 
(In = 0.0) 

Present analysis 

forced 
convection 

forced 
convection 

1.97 7.78-8.13 
l-co 

(K+ = 0.6) (Ra+ = 22-23) 

$J,O cc 1.98 1.797 

Gilpin et al. [13] experiment 
6-10 
(water) 

2.17-4.97 
(x,/A = (0.16 - 0.3 l)Re:‘*) 46-1 to 

t Inside the parentheses are the numbers as expressed in the original papers. 

IO6 
IO3 IO5 

REYNOLDS NUMBER 

= RANGE OF PRESENT RESULT 

-=- RANGE OF RESULT BY H.I.LEE ET AL 

-=.- RESULT BY MOUTSOGLOU ET AL. 

EXPERIMENTAL DATA BY GILPIN ET AL. 

x CONTINUOUS VORTICES 

CI OCCASIONAL VORTICES 

FIG. 3. Local Reynolds number vs critical local Grashof 
number marking the onset of longitudinal vortex rolls. 

To be more precise, we find by substituting E, = 1.98 
and Ra, = 778.9 in the above expressions that 
K&isa, N 0.6 and RaLiticn, N 22, which are exactly 
coincident with their Fig. 3. It is also important to 
note that their critical Rayleigh number and critical 
wave number depend on Prandtl number only very 
weakly, which justifies our simplification made below 

equation (8) and above equation (15). Since the present 
values of the Rayleigh number and wave number at 
the critical point in Blasius’ flow are exactly coincident 
with those obtained by Chen and Chen [4], it is 

unnecessary to repeat them in elaborating that the 
predicted wave number agrees well with the experi- 
mental observations of Gilpin et al. [ 131 and that the 
calculated value of the parameter Gr,/Rei.5 is about 

FIG. 4. Distributions of the normalized disturbances at the 
onset of longitudinal vortices for Case Al. 

one order of magnitude lower than the experi- 
mental results, which is usually the case with the 
thermal instability problems. However, we add that 
from Fig. 6 of Gilpin et al. the agreement between the 
critical wave numbers is better for smaller temperature 
differences, i.e. for stronger forced convection basic 
flow situations. 

Now that the validity of the present method has 

been established, its two-fold advantages can be 
considered. Firstly, it requires less computer time and 
memory. Secondly and more importantly, it provides 
useful information for further studies on the effect of 
the terms W, and &‘/ax, and thus on the onset 
mechanism of thermal instabilities. For instance, let 
us consider the fact that there exist no true solutions 
for Cases A3 and A4. For Case A3, where W, # 0 and 
%/ax = 0, the value of K is negative as can be seen 
from Table 2. Therefore, no solution of equation (32) 
exists which satisfies the condition that Y+ 0 as c -+ 
co. For Case A4, where W, = 0 and dt’ldx = 0, the 

critical wave number 8, becomes zero, contradicting 
the experimental observations. Therefore, it is strongly 
recommended that the conventional analysis on the 
thermal instability of forced (or mixed) convection 
flow in which the perturbation quantities are assumed 
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to be independent of the streamwise coordinate should 
be re-examined. 

The distributions of perturbation quantities at the 

onset of thermal instability for Case Al are illustrated 
in Fig. 4. Here, each of the perturbation amplitudes 
is normalized with respect to its maximum value 

since it can be calculated only up to multiplicative 
constants. It is of great interest to observe that the 
temperature disturbance is confined mainly in the 
thermal boundary layer, which is a strong indication 
that the bottling effect of the temperature disturbance 
may be a reasonable assumption. However, in utilizing 
this bottling effect in the stability problems, one has 
to be very careful about the possible occurrence of a 

discontinuous derivative of the temperature pertur- 
bation at the edge of the thermal boundary layer, as 
can be seen from equations (21) and (28b). Hence, the 
bottling effect can be considered only under such 
restrictions. 

When the values of Ra, and Gr,/Re:,5 for non- 

parallel and parallel basic flow models are compared, 
it can be seen that the former (Cases Al and Bl) 
represent lower values than the latter (Cases A2 and 
B2). This is considered to be due to the blowing effect 
of the basic transverse velocity component W,. In 
other words, in the case of the non-parallel basic flow 
model, the thermal boundary layer is more susceptible 
to instabilities due to the presence of W,. Lastly, if it 
is allowed to proceed along with the afore-mentioned 
reservations on the bottling effect, then x-dependent 
disturbances (Cases Bl and B2) can be said to give 
more stable values than x-independent disturbances 
(Cases B3 and B4). This is due to the presence of the 
x transport term in equation (17), namely, U&&‘/ax), 
which transfers the unstabilizing temperature disturb- 

ances t’ along the flow direction so that the flow 
becomes stabilized. 

5. CONCLUSION 

The onset of thermal instability in the form of 

longitudinal vortex rolls occurring in the laminar flow 
over a horizontal flat plate heated isothermally from 
below has been examined by linear stability analysis 
for the limiting case of very large Prandtl numbers, 
under the assumption that the amplitudes of the 
perturbation quantities may have non-zero stream- 
wise derivatives. 

By introducing a similarity variable based on vary- 
ing thermal boundary layer thickness and by employ- 
ing the non-parallel and parallel basic flow models in 
the form of approximating polynomials used in the 
integral method of forced convection boundary layer 
flow problem, the perturbation amplitudes can be 
sought in the convenient form of a fast convergent 
power series. Then, the neutral stability curves can be 
obtained by solving a secular equation generated from 
the interface conditions at the edge of the thermal 
boundary layer. 

The critical Rayleigh number and the critical wave 
number are shown to agree exactly with the theoretical 

values of Chen and Chen [4], explaining very well 
the experimental results of Gilpin et nl. [13]. More 
reasonable interpretations of other previous studies 
are given with the emphasis that the x-dependent 
perturbation quantities must be considered in the 
case of forced convection basic flow, which acts to 
stabilize the flow. The critical buoyancy parameter 
for non-parallel basic flow is smaller than that for 
parallel basic flow, which verifies the blowing effect 
of the basic transverse velocity component. Although 
the bottling effect of temperature perturbation may 
be a useful tool to simplify the formulation of the 
stability problem, appropriate caution should be 
taken when it is adopted. 

Acknowledgement-The authors deeply appreciate the sup- 
port of the Korea Science and Engineering Foundation for 
this work 

1. 

2. 

3. 

4. 

5. 

6 

I 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

R. S. Wu and K. C. Cheng, Thermal instability of Blasius 
flow along horizontal plates, Int. J. Heat Mass Transfer 
19, 907-912 (1976). 
A. Moutsoglou, T. S. Chen and K. C. Cheng, Vortex 
instability of mixed convection flow over a horizontal 
flat plate, J. Heat Trawler 103, 257-261 (1981). 
S. E. Haaland and E. M. Snarrow. Vortex instabilitv of 
natural convection flow on inclined surfaces, Int. J. Heat 
Mass Transfer 16, 2355-2367 (1973). 
K. Chen and M. M. Chen, Thermal instability of forced 
convection boundary layers, Am Sot. Mech. Engrs, Series 
C, J. Heat Transfer 106, 284-289 (1984). 
G. J. Hwang and K. C. Cheng, Thermal instability of 
laminar natural convection Row on inclined isothermal 
plates, Can. J. Chem. Engng 51, 659-666 (1973). 
C. K. Choi, Thermal convection in the liquid film of a 
stratified gas/liquid flow, Ph.D. thesis, Clarkson College 
of Technology (1976). 
E. J. Davis and C. K. Choi, Cellular convection with 
liquid-film flow, J. Fluid Mech. 81. 565-592 (1977). 
T. S. Chen, E. M. Sparrow and A. Mucoglu, Mixed 
convection in boundary layer flow on a horizontal plate, 
Am. Sot. Mech. Engrs, Series C, 3. Heat Transfer 99, 
66-71 (1977). 
E. M. Sparrow and W. J. Minkowycz, Buoyancy effects 
on horizontal boundary-layer flow and heat transfer, 
Int. J. Heat Mass Transfer 5, 5055511 (1962). 
E. M. Sparrow, R. J. Goldstein and V. K. Jonsson, 
Thermal instability in a horizontal fluid laver: effect of 
boundary conditions and non-linear temperature profile, 
J. Fluid Me& 18, 5133528 (1964). 
J. Matthews and R. L. Walker, Mathematical Methods 
of Physics, 2nd edn. Benjamin, Menlo Park, California 
(1973). 
H. I. Lee, C. K. Choi and J. Y. Yoo, An analysis on 
vortex instability of Blasius flow over isothermally 
heated horizontal plates, Trans. Korean Sot. Mech. Engrs 
6, 390-396 (1982) in Korean. 
R. R. Gilpin, H. Imura and K. C. Cheng, Experiments 
on the onset oflongitudinal vortices in horizontal Blasius 
flow heated from below, Am. Sot. Mech. Engrs, Series 
C, J. Heat Transfer 100, 71-77 (1978). 
T. S. Chen and A. Mucoglu, Wave instability of mixed 
convection flow over a horizontal flat plate, Inc. J. Heat 
Mass Transfer 22, 185-196 (1979). 

REFERENCES 



An analysis on the thermal instability of forced convection flow over isothermal horizontal flat plate 935 

ANALYSE DE L’INSTABILITE THERMIQUE DE L’ECOULEMENT FORCE DE 
CONVECTION SUR UNE PLAQUE PLANE HORIZONTALE ET ISOTHERME 

R&n&-L’instabilite thermique de la convection for&e sur une plaque plane horizontale isotherme, en 
forme de tourbillons longitudinaux est etudiee en introduisant une dependance spatiale tridimensionnelle 
des quantites de perturbations. Le systeme d’iquations de stabilitt est fortement simplifie en considerant 
le cas limite des tres grands nombres de Prandtl et en recherchant des solutions de similitude pour les 
fonctions amplitude de quantites de perturbation. L’effet de la perturbation de temperature dependante 
de x est montrt stabiliser l’&coulement en comparaison de X, ce qui exphque tres bien les resultats thermiques 

et les observations experimentales. 

UNTERSUCHUNG DER THERMISCHEN INSTABILITAT EINER ERZWUNGENEN 
~o~vErcT~oNssmUmNc3 ~ZBER EINE ISOTHERME HORIZONTALE EBENE 

PLATTE 

Zusammenfassung-Es wurde die thermische Instabilitk einer erzwungenen Konvektionsstromung iiber 
eine isotherme horizontale ebene Platte in Form von Longitudinalwirbeln durch Einfiihrung der drei- 
dimensional raumlichen Abhlngigkeit der StorgriiBen untersucht. Das System der Stabilitatsgleichungen 
wurde wesentlich vereinfacht durch Betrachten des Grenzfalls sehr groller Prandtl-Zahlen und durch 
Aufsuchen von Ahnlichkeitsliisungen fiir die Amplitudenfunktion der StGrgriiBen. Es zeigt sich, daD 
die x-abhlngigen Temperaturstiirungen im Gegensatz zu den x-unabhlngigen Temperaturstiirungen die 
Striimung stabilisieren. Dies erklart sehr gut die vorhandenen theoretischen Ergebnisse und die experi- 

mentellen Beobachtungen. 

MCCJIE~OBAHME TEHJIOBOH YCTO@IMBOCTM BbIHYXC.4EHHOT0 
KOHBEKTMBHOI-0 TEYEHMR HALf M30TEPMMYECKOfi I-OPH30HTAJlbHOfi 

HJIOCKOI? IIJIACTHHO~ 

Am#oTaunn--Tennolaafl yCTC&iHBOCTb BbIH)'XCAWHOrO KOHBCKTKBHOTO TeWHIITr OTHOCFiTeJIbHO B03M)'- 

LIZHId Tl(Ila IlpOAOJlbHbtX BIIXpeii HaA H30TePMHWClCO~ rOpH30HTWIbHOfi IlJlOCKOii IlJlaCTI4HOii NCC.iIe- 

AyeTCR MeTOAOM B03MYIWHHji, 3aBUCSILWiX OT TpeX IlpOCTpaHCTBeHHbtX KOOpAIiHaT. CHCTeMa 

)'paBHeHHii yCTOfi'IHElOCTkiCyIIleCTBeHHo ynpOluaeTCr3aCYeTpaCCMOTpeHIIX IIpeAenbHOrO CJIy'iaa OWHb 

6onbmnx YHCeJl l-ipaHA?'JlSl I4 OTbICKaHlUR aBTOMOAeJIbHbIX peLIJeH&iii AJlSl aMIlJlHTyAHbIX i$YHKU&iir 

BeJIWIIIH BO3M)'tlleHHii.~OK~3aHO,~T0 BJUiIHHe BO3MyLUeHEifi TeMnepaTypbl,3aB~CsmHX OT .X,CTdWIW 

JMPYCT Te'IeHtiC! IlO CpaBHeHliiO C B03MYUIeHNRMH T'ZMII‘ZpaTypbI, Iit? 3SLBLiCRIUHMH OT X, UT0 XOPOLUO 


